metal-organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Shu-Ni Li,^a‡ Yan-Wei Ren,^a Jun Li,^a Feng-Xing Zhang^a and Man-Cheng Hu^b*

^aDepartment of Chemistry, Northwest University, Xi'an 710069, People's Republic of China, and ^bSchool of Chemistry and Materials Science, ShaanXi Nomal University, Xi'an 710062, People's Republic of China

‡ Also at School of Chemistry and Materials Science ShaanXi Nomal University Xi'an 710062 People's Republic of China

Correspondence e-mail: zhangfx@nwu.edu.cn

Key indicators

Single-crystal X-ray study T = 296 KMean σ (C–C) = 0.008 Å R factor = 0.064 wR factor = 0.202 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.jucr.org/e.

{Tris[2-(2-pyridylmethyleneimino)ethyl]amine{manganese(II) bis(perchlorate)

In the title complex, $[Mn(C_{24}H_{27}N_7)](ClO_4)_2$, the Mn^{II} ion is chelated by a tris[2-(2-pyridylmethyleneimino)ethyl]amine ligand, in a distorted octahedral coordination geometry. Weak C-H···O interactions occur between the perchlorate anions and the Mn^{II} complex cation.

Comment

The chemistry of Mn complexes is of interest because of their functions in biological systems. We report here the structure of the title Mn^{II} complex, (I), which contains a Schiff base ligand.

The structure of (I) is shown in Fig. 1. The crystal structure of (I) consists of discrete MnII complex cations and perchlorate anions. The Mn^{II} ion is chelated by a tris[2-(2pyridylmethyleneimino)ethyllamine ligand, in a distorted octahedral coordination geometry. The Mn-N(pyridine) bond distances are much longer than the Mn-N(imine) bond distances (Table 1). Weak C-H···O interactions occurs between the perchlorate anions and the Mn^{II} complex cation (Table 2).

Experimental

A methanol solution (10 ml) of tris(2-aminoethyl)amine (tren) (3 mmol) was mixed with a methanol solution (10 ml) of 2pyridinecarboxaldehyde (9 mmol). After the mixture had been stirred at 323 K for 1 h, Mn(ClO₄)₂.6H₂O (3 mmol) was added to the orange solution and a yellow precipitate appeared. The precipitate was filtered off and dissolved in dimethylformamide (DMF). Yellow single crystals of (I) were obtained from the DMF solution after one month.

© 2006 International Union of Crystallography All rights reserved

m498 Li et al. • $[Mn(C_{24}H_{27}N_7)](CIO_4)_2$ Received 3 January 2006 Accepted 6 February 2006

Figure 1

The asymmetric unit of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Crystal data

 $[Mn(C_{24}H_{27}N_7)](ClO_4)_2$ $M_r = 667.37$ Monoclinic, C2/c a = 28.3550 (13) Å b = 10.7721 (5) Å c = 19.4761 (8) Å $\beta = 101.070$ (3)° V = 5838.1 (5) Å³ Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002) $T_{\min} = 0.768, T_{\max} = 0.869$ 15092 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.202$ S = 1.005173 reflections 379 parameters H-atom parameters constrained $D_x = 1.519 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 1930 reflections $\theta = 2.8-19.8^{\circ}$ $\mu = 0.69 \text{ mm}^{-1}$ T = 296 (2) KBlock, yellow $0.40 \times 0.25 \times 0.21 \text{ mm}$

5173 independent reflections
3581 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.049$
$\theta_{\rm max} = 25.1^{\circ}$
$h = -33 \rightarrow 33$
$k = -10 \rightarrow 12$
$l = -23 \rightarrow 23$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0889P)^2 \\ &+ 12.2245P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} < 0.001 \\ \Delta\rho_{\text{max}} &= 0.89 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.40 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Mn1-N1	2.357 (4)	Mn1-N4	2.206 (4)
Mn1-N2	2.223 (4)	Mn1-N5	2.294 (4)
Mn1-N3	2.367 (4)	Mn1-N6	2.228 (4)
N4-Mn1-N2	101.62 (14)	N6-Mn1-N1	93.23 (14)
N4-Mn1-N6	109.41 (15)	N5-Mn1-N1	86.65 (13)
N2-Mn1-N6	104.12 (14)	N4-Mn1-N3	71.51 (15)
N4-Mn1-N5	99.32 (14)	N2-Mn1-N3	89.95 (13)
N2-Mn1-N5	158.56 (14)	N6-Mn1-N3	165.15 (15)
N6-Mn1-N5	72.80 (15)	N5-Mn1-N3	92.38 (14)
N4-Mn1-N1	157.35 (14)	N1-Mn1-N3	86.50 (13)
N2-Mn1-N1	72.22 (13)		

Table 2 Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2\cdots O7^{i}$	0.93	2.56	3.390 (13)	148
$C11-H11\cdots O1^{ii}$	0.93	2.58	3.326 (8)	138
C14-H14···O2	0.93	2.57	3.466 (7)	163
C17-H17···O5	0.93	2.57	3.362 (8)	144
C19−H19···O3 ⁱⁱⁱ	0.93	2.53	3.431 (8)	163
$C22-H22\cdots O5^{iii}$	0.93	2.57	3.464 (8)	163
Symmetry codes: $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}.$	(i) $-x + \frac{1}{2}$	$y, -y + \frac{1}{2}, -z + 1$; (ii) $x, -y +$	$1, z + \frac{1}{2};$ (iii)

H atoms were placed in calculated positions, with C-H = 0.93 (aromatic) or 0.97 Å (methylene), and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2001); software used to prepare material for publication: *SHELXTL*.

The work was supported by the National Natural Science Foundation of China (No. 20271041) and Shaanxi Natural Science Foundation (No. 2002B04).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2001). *SHELXTL*. Version 5. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.